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Current research in Artificial Neural Networks indicates that net-

works offer some potential advantages in adaptation and fault tolerance.
This research is directed at determining the possible applicability of neural

networks to aircraft control. The first application will be to aircraft trim.
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• Neural Networks for Aircraft Trim

• Application of Neural Networks to Control
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Introduction to Neural Networks

Artificial neural networks (usually called simply neural networks) are
an attempt to model the processing behavior of the nervous system. Neural
network research focuses on a much larger group of networks loosely clas-
sified by the dense interconnection of simple computational elements.
Since the majority of the processing operations are independent of one
another, neural networks can conduct massively parallel computations.
While the human brain is estimated to have 100 billion neurons each with

approximately 1000 inputs and outputs, artificial neural networks are
interested in the computational capabilities of smaller networks which may
or may not be biologically correct.

• Artificial neural networks

Abstract simulation of real nervous system

Dense interconnection

of simple computational elements

Massively parallel computation

Biologically inspired vs. biologically accurate

Estimated 100 billion (1011) neurons in brain

Each has 1000 inputs and outputs

168



Introduction to Neural Networks

Most current applications of neural networks have been in the area of
pattern recognition. A smaller number of applications have been devoted to
optimization, most notably the famous Traveling Salesman Problem in
which the shortest route through selected cities is determined.

The major benefits of neural network are two-fold. First, neural

networks have the ability to learn their internal knowledge from
presentation of input-output data. This means that the network does not
have to be programmed in the traditional sense. It must be trained with

examples of the desired input-output relationship. Adaptability arises if the
learning process continues while the network is in operation. Neural
networks are potentially very fault tolerant due to the massively parallel
architecture. The knowledge contained in the network is distributed

throughout the network so that the loss of individual computational
elements should not seriously degrade the performance of the network.

• Applications

Speech/Image/Pattern Recognition, Classification and
Restoration

Optimization

• A few potential benefits

Adaptability/Learning

Robustness / Fault tolerance
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Introduction to Neural Networks

Neural network models are differentiated by the type of computational
element (or node), the connection of the nodes, and the learning rule used to
update the weighted connections between nodes.

t

Neural network models are specified by

Node characteristics

- linear / nonlinear

- analog / discrete (binary)

Net topology

- node interconnections

• layers
• feedforward/feedback

Learning rule

- supervised / unsupervised
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Neural Network Node Characteristics

An individual neural network node computes a weighted sum of its
inputs and runs the sum through a fixed function. The resulting value is
transmitted to all of the following network elements. The fixed function,
called the node activation function, is generally a bounded, S-shaped non-
linear element. A common activation function is the sigmoid function.
The nonlinearity of the activation function provides the computational
power of the network. Networks with linear elements have been tested, but
most contain some type of nonlinear function.

• Individual Neural Net Node
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Threshold

Node Activation Function

Sigmoid fix) = 1.0 / (1.0 + exp(-x))

.
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Network Topology and Operation

The multilayer feedforward network is characterized by the distinct

layers of network nodes connected only in the forward direction. There are no
connections between nodes in a single layer nor are there connections from

higher layers to lower layers. A co.nstant unit input is used as a threshold

or bias. +
The operation of the network is easily characterized by a recursive

matrix equation. The output of each layer is simply the weighted sum of its

inputs passed through the nonlinear activation function f. The knowledge
of the system is contained in the weighted connections, i.e., the weights, W.

As the weights change, the nonlinear input-output relationship function

modeled by the network changes.

• Multilayer Feedforward Network
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k = 1, ..., N layersxCk) = f(wCk-1) x(k-1) ),

x(0) = input

x(N) = output
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Neural Network Learning

In supervised learning, the neural network is trained to match a par-
ticular input-output relationship. First an input is applied to the neural
network. Next, the output produced by the network is compared to the de-
sired output. Finally, the network weights are adjusted based upon the er-
ror.

• Supervised Learning Diagram
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Neural Network Learning

The backpropagation learning algorithm adjusts the weights of the
network to minimize the mean square error of all of the outputs. The diffi-

culty comes when assessing the importance of individual weights of the in-

ternal (or hidden) layers on each ogtput. The backpropagation learning al-

gorithm explicitly assigns a portion of the error to each element. The one

requirement is that the nonlinear function in each network node must be

differentiable.

• Learning by Backpropagation

Adjust weights to minimize the mean square error

Difficulty of error assignment

Differentiability of nonlinearity

• Backpropagation

Wi+l = Wi + nWi

AW i = _ x(k-1) 5-(k)

fi is the error term

for output layer = ( ud - u)

for hidden layers, error is backpropagated
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Neural Network for Aircraft Trim

A multilayer feedforward neural network is trained on the input-

output relationship for the longitudinal trim of a transport aircraft. Using

the backpropagation learning rule, the network is taught to produce the

aircraft control positions necessary to maintain a given trim state. Such a

trim map could be used as part of a perturbation control law. The power of

the neural network would eventually be in the ability to continuously update

its knowledge of the aircraft during operation.

• Exploit learning/adaptability features of neural networks

Teach neural network the map between
trim states and trim control positions

Useful for

Autotrim system
Trim map for perturbation control law

Straight and level flight
Longitudinal states and controls for learning

x = { q - dynamic pressure

V - forward velocity

T- flight path angle

a - angle of attack

q - pitch rate

h- altitude }

u = { 5E - elevator deflection

Or - throttle deflection

175



Aircraft Trim Points

The neural network is trained on aircraft trim points ranging from

Mach 0.25 at 1000 feet up to Mach 0.9 at 20000 feet.
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Example Network Run

A simple example is shown in which the network is trained only on

the aircraft data at 1000 and 5000 foot altitudes. A three layer network is

used with 6 inputs, 6 hidden nodes in one layer, and 2 outputs.

• Train network with 17 trim points, 6 units in hidden layer

• 5000 Iterations, _ = 0.5, momentum - 0.9

• Final Total Square Error = 0.0004
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Error in Learned Response

The results after 5000 iterations are quite good. The elevator error is
less than I percent and the throttle error is less than 3 percent over the en-
tire learned range.
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Neighboring Optimal Control Law
using Neural Network

The neural network trained as a trim map fits quite nicely into a
neighboring optimal control scheme. A perturbation control law is used to
eliminate the errors between the actual aircraft state and the desired trim
value. The resulting perturbation control position is combined with the
trim control position from the neural network trim map to produce the con-
trol input for the aircraft.

• Full state feedback perturbation control law developed for
linearized system

• Applied to full nonlinear system using a Neighboring
Optimal Control structure

• Trim values provided by Neural Network
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Example Histories using Neighboring Optimal
Control with a Neural Net

Using the neighboring optimal control scheme with a neural network

as the trim map, a smooth transition from 5000 to 2500 feet is effected for the

simulated aircraft. The control positions are smooth and accurate over the

entire range.
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Neural Networks for Control

In addition to use as a trim map, a neural network could possibly be
trained as a feedback control element. If the aircraft is modeled by a
discrete time linear system, the weights could be adjusted as to minimize
the error between the actual system states and some desired states. The
mathematics of such a minimization appears feasible.

• Investigate Neural Network as Feedback Control Element
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• Discrete Time Linear System

x. =@x.+Fu.
--1+1 --I --1

• Neural Network Control Law

u. = f( W (1) f( w_ x i))

• Adjust weights to minimize least squares fit error
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• Steepest descent training based on error gradient
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Neural Networks for Aircraft Control

There are many topics which still must be investigated before any valid
conclusions may be made about the usefulness of neural networks in air-
craft control. The ability of the network to correctly generalize to trim
points between the trained data is an important topic which must be looked
into. The fault tolerance of neural networks is based upon massive par-
allelism. It is unknown how much of this fault tolerance is retained by
smaller networks. There are many more possible applications for neural
networks that are, as yet, untapped.

Topics of Interest for Neural Networks

• Generalization capabilities of networks

What happens between learned points?

• Fault tolerance capabilities of networks

What happens if nodes or weights malfunction?

• Other uses of neural networks for aircraft control

Model identifier

Adaptive control element

Conclusions

• Neural Networks show some promise for control
applications

• There is much left to investigate
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